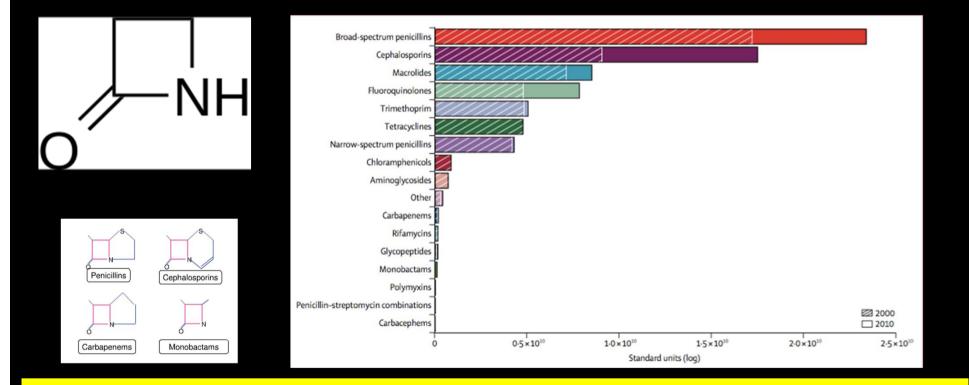
### Increased dosing of β-lactams = Increased Toxicity ?

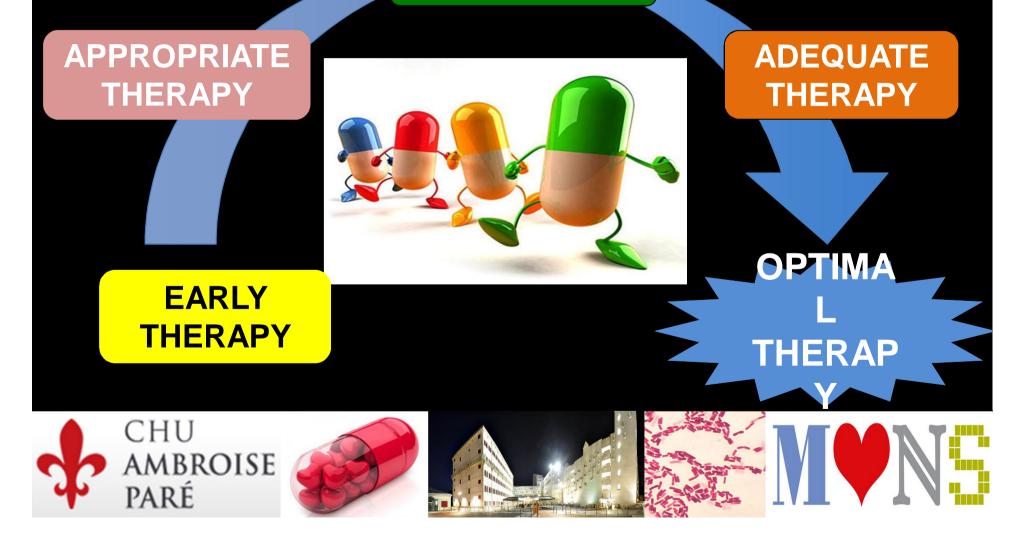





Dr Marjorie Beumier Intensive Care department Hôpital Ambroise Paré



### **β-lactams**

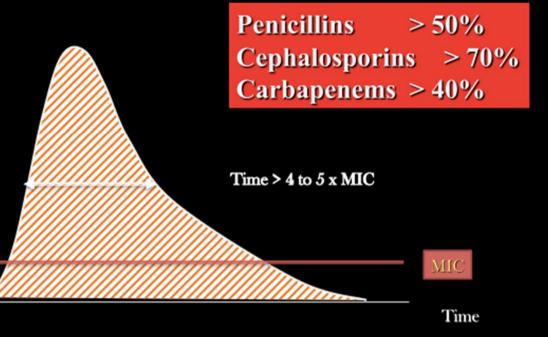



### Standard dosing = Wide Therapeutic Index



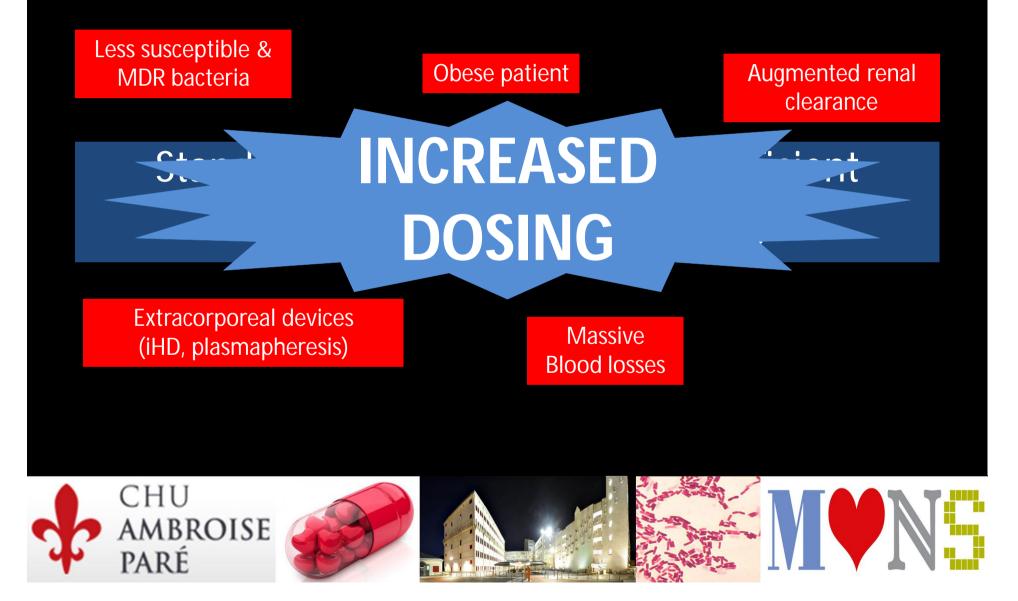
### Increased dosing – WHY?

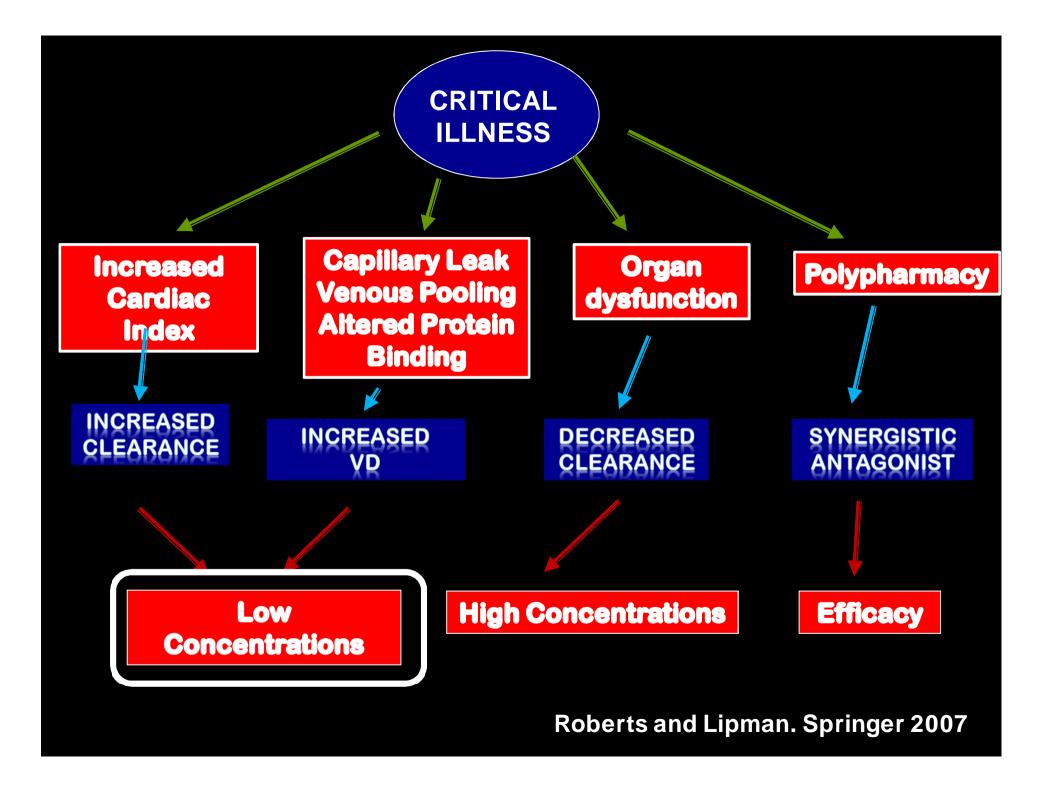
#### COMBINATION




### Increased dosing – WHY?

Drug regimens are based on drug PKs assessed in healthy volunteers (HV) or patients with less severe infections (CTRL)





Changes in PK parameters will result in unpredictable drug concentrations using the same regimens than in HV/CTRLs





## Increased dosing – WHY?





### **β-lactams toxicity**

- Rare Difficult to diagnose Underdiagnosed
- Particularly difficult to diagnose in ICU patients
  - Multiple organ failure
  - Polymedication
- Unclear whether this may lead to increased morbidity (and mortality ???)



## Most common toxicities

| ALLERGIC              | 1-10%                                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Cross-reactivity for type I                                                                                                                                  |
| HEMATOLOGICAL         | Agranulocytosis (2-15/million)<br>Thrombopenia/anemia<br>Neutropenia                                                                                         |
| HEPATOTOXICITY        | 1/100,000                                                                                                                                                    |
|                       |                                                                                                                                                              |
| NEPHROTOXICITY        | Intersticial nephritis ( <i>ALL</i> )<br>AKI/Delayed recovery ( <i>PTAZ</i> )<br>Park Mayo Clin Proc 2005                                                    |
| NEUROTOXICITY         | Rare (CEF>Others)       Clark Mayo cum rice 2000         Clark Pharmacotherapy 2006         Andres Eur J Intern Med 2006         Koklu Ann pharmacother 2003 |
| CHU<br>AMBROI<br>PARÉ |                                                                                                                                                              |

#### NEUTROPENIA

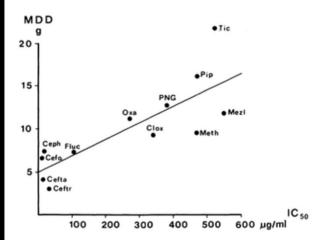
#### Mechanisms? Direct bone marrow toxicity IN VIVO

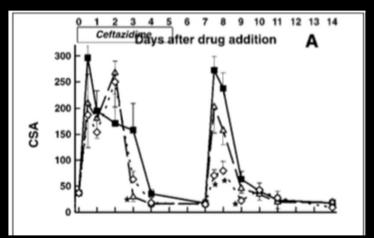
- 24 patients -> myelogram (at different intervals from the nadir of neutropenia)
- Lack of well-differentiated myeloid granulocyte precursors reduction of myelocyte

#### <u>IN VITRO</u>

 A dose-dependent <u>inhibition of granulopoiesis</u> was found with all the investigated β-lactams

CEF > PTAZ





Figure 2. Correlation (r = .804; P < .01) of MDDs inducing neutropenia in vivo with IC<sub>50</sub> values in vitro: PNG = penicillin G; Cefo = cefotaxime; Cefta = ceftazidime; Ceftr = ceftriaxone; Ceph = cephalothin; Clox = cloxacillin; Fluc = flucloxacillin (Floxacillin); Meth = methicillin; Mezl = mezlocillin; Oxa = oxacillin; Pip = piperacillin; and Tic = ticarcillin.



#### NEUTROPENIA

#### Mechanisms?

- Dose-dependent decrease in <u>Colony</u>
   <u>Stimulating Activity</u> IN VITRO
- Several articles have reported drugdependent antibodies to neutrophils -> similar to haemolytic anemia



Hauser Stemcell 1998 Rouveix BMJ 1983 Marie JP Presse Med 1986



#### NEUTROPENIA

- Reversible neutropenia may occur in 5 to 15% of patients receiving BL for more than <u>10 consecutive days</u> of IV therapy with β-lactams antibiotics
- 90 % appear after 10 days of Abtherapy
- TZP-induced neutropenia was related to the <u>cumulative dose</u> (range 204–612 g) and duration of therapy (range 18–51 days)
- <u>**High doses**</u> BL for endocarditis : 29 patients neutropenia 7/29 duration of neutropenia 2-12d
  - Risk factor neutropenia : low count of neutrophils high doses of BL for long period (14- 24 d)

### **RESOLUTION AT DRUG DISCONTINUATION**

Peralta CID 2003 Olaison JAC 1990



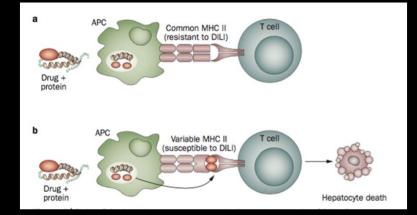




#### ANEMIA

- Rare
- Hemolysing antibodies
- 26 cases with PTAZ

#### THROMBOPENIA


- Antibody-mediated platelet destruction
- Other mechanisms?
- PTAZ may induce a reversible conformation in the platelet membrane generating a neoantigen

| Table 5. Beta-l                                                       | lactam antibiotics descril               | ped as a cause of o       | Irug-induced im     | mune thrombocytopenia.                                   |    |                                                  |
|-----------------------------------------------------------------------|------------------------------------------|---------------------------|---------------------|----------------------------------------------------------|----|--------------------------------------------------|
| Agent                                                                 | Platelet<br>count < 20 × 10 <sup>9</sup> | Re-challenge<br>performed | In vitro<br>testing | Mechanism                                                |    |                                                  |
| Amoxicillin                                                           | +                                        |                           | +                   | Drug-dependent binding to specific platelet protein      |    |                                                  |
| Ampicillin                                                            | +                                        |                           | +                   | Increase in drug-dependent-platelet-associated           |    |                                                  |
| Methicillin<br>Penicillin<br>Piperacillin<br>Cephaman <del>dole</del> | RESOLUT                                  | ION AT                    | DRUG                | DISCONTINUATIO                                           | DN | Lindenbaum 1996                                  |
| Ceftazidime<br>Cephalothin<br>Ceftizoxime                             | +<br>+                                   | +                         | +<br>+<br>+         | Like methicillin<br>Like amoxicillin<br>Like methicillin |    | Gharpure 1993<br>Bougie 2003<br>Shamsuddine 2015 |
| CH<br>AM<br>PAI                                                       | I U<br>I <b>Broise</b><br>Ré             |                           |                     |                                                          |    |                                                  |

### HEPATOTOXICITY

#### Amoxiclav

Mild hepatocellular or cholestatic liver injury 10 per 100,000 patients treated Life-threatening acute liver failure: few case reports (extra-hepatic manifestations) Mechanism of hepatotoxicity is unclear *Immuno-allergy – HLA predisposition Not clear if correlated to dosing* 



#### PTAZ - CEF

May induce DILI Minor clinical significance

Rodriguez 1996 *Tujios 2011* Gresser U 2001 Larrey 1992 Zhong Fang 2013





### HEPATOTOXICITY

#### Ceftriaxone

High biliary concentrations (150-fold blood concentrations) -> More likely to induce "sludge"

| Characteristics                                      | Ceftriaxone<br>2 g/day<br>(n = 434) | Ceftriaxone<br>4 g/day<br>(n = 37) | P value |
|------------------------------------------------------|-------------------------------------|------------------------------------|---------|
| Duration of therapy (days), median (IQR)             | 8 (6–10)                            | 7 (6–10)                           | 0.574   |
| Concomitant drug, n (%)                              |                                     |                                    |         |
| Proton-pump inhibitor                                | 157 (36.2)                          | 17 (45.9)                          | 0.287   |
| Antiepileptic drug                                   | 31 (7.1)                            | 4 (10.8)                           | 0.342   |
| Acetaminophen (>1500 mg/day for ≥3 consecutive days) | 3 (0.7)                             | 0 (0)                              | 1       |
| Macrolide                                            | 45 (10.4)                           | 2 (5.4)                            | 0.565   |
| Clindamycin                                          | 36 (8.3)                            | 4 (10.8)                           | 0.541   |
| Metronidazole                                        | 2 (0.5)                             | 2 (5.4)                            | 0.033   |
| Antituberculosis drug (INH and/or RFP)               | 0 (0)                               | 4 (10.8)                           | < 0.001 |
| Laboratory data at baseline, median (IQR)            |                                     |                                    |         |
| AST (IU/L)                                           | 26 (19-38.8)                        | 28 (18-47)                         | 0.732   |
| ALT (IU/L)                                           | 18 (13-30.8)                        | 25 (13-40)                         | 0.123   |
| ALP (IU/L)                                           | 254 (198.3-335)                     | 217 (179-319)                      | 0.095   |
| T-bil (mg/dL)                                        | 0.6 (0.4-1.0)                       | 0.7 (0.5-0.9)                      | 0.749   |
| Serum Cr (mg/dL)                                     | 0.80 (0.62-1.17)                    | 0.95 (0.66-1.24)                   | 0.312   |
| Dutcomes, n (%)                                      |                                     |                                    |         |
| Liver injury                                         | 9 (2.1)                             | 6 (16.2)                           | < 0.001 |
| Mild liver injury                                    | 35 (8.1)                            | 12 (32.4)                          | < 0.001 |
| CHU<br>AMBROISE<br>PARÉ                              | S                                   |                                    |         |

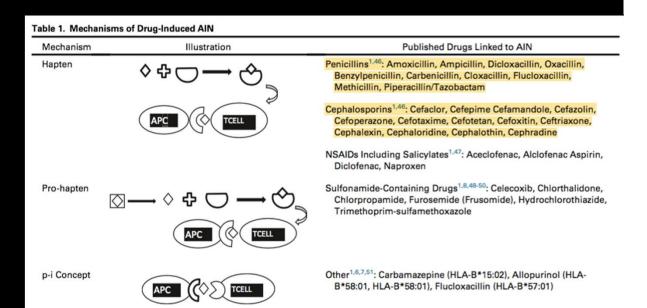
High (4g) vs normal dosing (2g) Retrospective study

Biliary sludge or stones not assessed

| Factors                               | OR (95 % CI)      | P value |
|---------------------------------------|-------------------|---------|
| Ceftriaxone of 4 g/day                | 7.23 (2.01–26.00) | 0.002   |
| Concomitant use of antiepileptic drug | 2.82 (0.68-11.70) | 0.151   |
| Propensity score                      | 2.20 (0.25-19.60) | 0.48    |

CI confidence interval, OR odds ratio

Richards Drugs 1987


Nakarai Eur J Clin Pharmacol 2016



### Nephrotoxicity

### -AKI increased morbidity and mortality -Interstitial nephritis

- Delayed T cell mediated HS
   reaction
- Ampiciliin > 200mg/kg/j
- High dose methycilin
   Prolonged treatment



#### Recovery after drug discontinuation









### Nephrotoxicity

#### PTAZ MORE NEPHROTOXIC ?

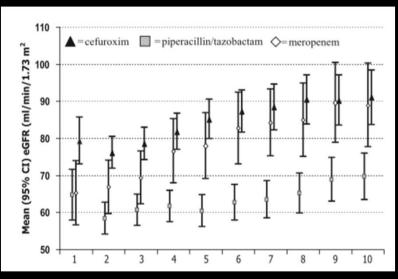
- PTAZ +VAN : increased incidence of nephrotoxicity
   <u>OR = 2.5 5.0</u>
- RETROSPECTIVE STUDIES
  - MEM + VAN / PTAZ + VAN / CEF + VAN
  - various definitions of AKI
  - DOSING?
- PROSPECTIVE STUDY
  - 85 patients
  - Higher rate of AKI in PTZ group (37 vs. 7%)
  - Standard Dosing
  - No multivariate analysis





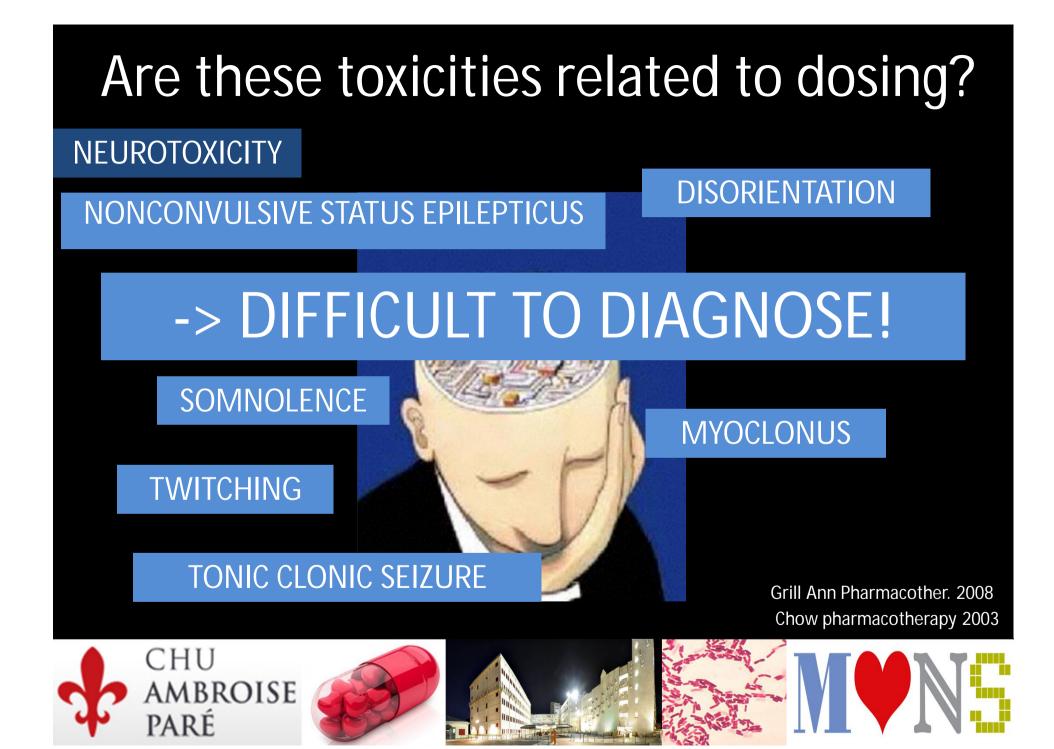


Nephrotoxicity

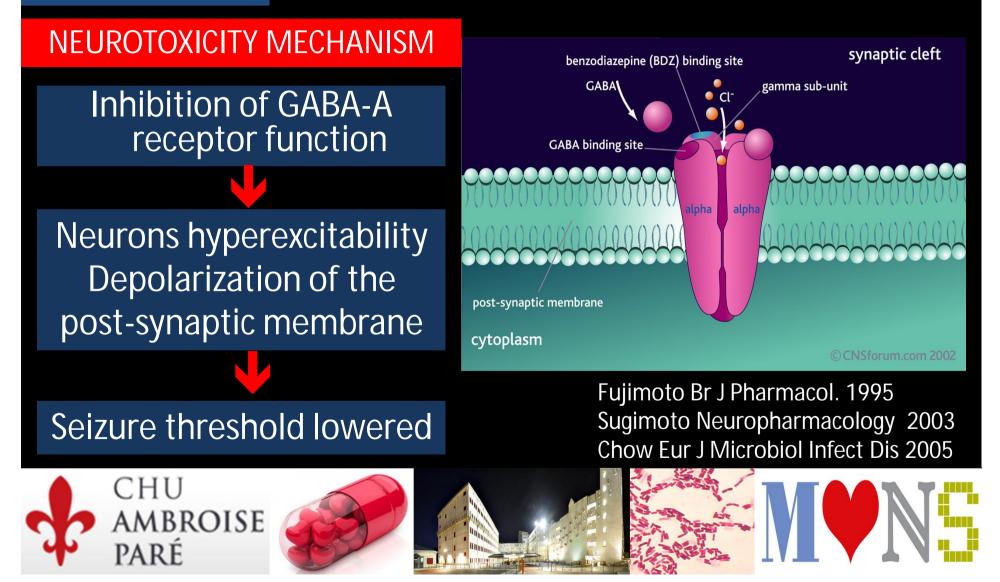



Kidney failure related to broad-spectrum antibiotics in critically ill patients: secondary end point results from a 1200 patient randomised trial

1200 ICU patients – prospective randomised study Standard Vs High exposure therapy


More AKI in High exposure Piperacillin/tazobactam : cause of delayed renal recovery in critically ill when compared to other BL

Not related to dosing ... More to the drug

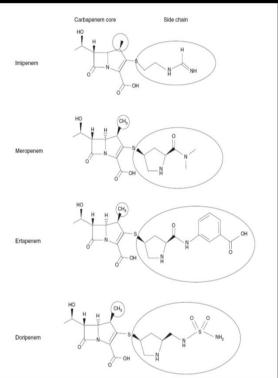



#### Jensen 2012





#### NEUROTOXICITY




#### NEUROTOXICITY

1. <u>Dose-dependent mechanisms</u>: More convulsive activity at higher drug concentrations *Cephalosporins > Penicillins* 

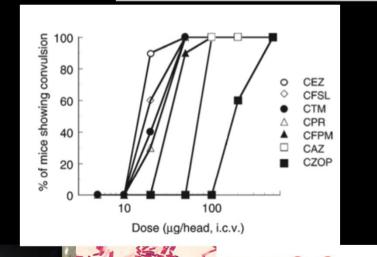
2. <u>Voltage-dependent mechanisms</u>
 More basic->better binding to the GABA<sub>A</sub>
 -> higher neurotoxicity

Imipenem >> meropenem > doripenem



De Sarro Antimicrob Agents Chemother. 1995 Sunagawa, J Antibiot 1992 Norby JAC 2000




### NEUROTOXICITY

Evidence for the involvement of GABA<sub>A</sub> receptor blockade in convulsions induced by cephalosporins

Masahiro Sugimoto a, Ichiro Uchida a,\*, Takashi Mashimo a, Shunji Yamazaki b, Kazuo Hatano b, Fumiaki Ikeda b, Yoshitaka Mochizuki c, Takao Terai c, Nobuya Matsuoka b

- Direct injection of AB into the lateral ventricle of mouse brain

- ALL ABs: dose-dependent induced convulsion



Neuropharmacology 45 (2003) 304-314





#### **NEUROTOXICI** ΤY

#### Neurotoxic effects associated with antibiotic use: management considerations

| Antibiotic class                                                                                        | Number of publications                                      | Neurotoxic effects                                                | Mechanism of neurotoxicity                                                                         | Risk factors                                                     |   |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---|
| Beta lactams-<br>Cephalosporins:<br>High risk agents:<br>1. Cefazolin                                   | 24- Case reports; retrospective<br>reviews; review articles | Encephalopathy with Triphasic<br>waves on EEG<br>Tardive seizures | Inhibition of GABA-A release;<br>Increased glutamate; Induction<br>of endotoxins; Cytokine release | Renal failure<br>Prior CNS disease<br>Older age<br>Excess dosage | 1 |
| 2. Cefesolis<br>3. Ceftazidime<br>4. Cefoperazone                                                       | RISK FAC                                                    |                                                                   |                                                                                                    | Excess dosage                                                    |   |
| <ol> <li>5. Cefepime</li> <li>Low risk agents:</li> <li>1. Cephalexin</li> <li>2. Cefatoxime</li> </ol> | Renal 1                                                     |                                                                   |                                                                                                    |                                                                  |   |
| 3. Ceftriaxone<br>Beta-lactams-<br>Penicillins:<br>1. Benzylpenicillin                                  |                                                             | v patient                                                         |                                                                                                    | Renal failure; low birth<br>weight-neonates                      |   |
| 2. Penicllin G<br>3. Pipercillin<br>4. Ticarillin                                                       |                                                             | ric patient                                                       |                                                                                                    |                                                                  |   |
| 5. Ampicillim<br>6. Amoxacillin<br>7. Oxacillin<br>Beta-lactams                                         |                                                             | isting brain                                                      |                                                                                                    | Renal failure                                                    |   |
| Carbapenems<br>1. Imepenem<br>2. Meropenem                                                              |                                                             | Seizures<br>Myoclonus<br>Headache                                 | Possibly binding of glutamate                                                                      |                                                                  |   |
| <ol> <li>Paripenem</li> <li>Ertapenem</li> <li>Doripenem</li> <li>Ceftaroline</li> </ol>                |                                                             |                                                                   | Grill                                                                                              | BJCP 2011                                                        |   |
| ROISE                                                                                                   |                                                             |                                                                   |                                                                                                    |                                                                  |   |
| É                                                                                                       |                                                             |                                                                   | RET                                                                                                |                                                                  |   |

#### NEUROTOXICITY

### Continuous Epileptiform Discharges in Patients Treated With Cefepime or Meropenem

Gilles Naeije, MD; Sophie Lorent, MPharm; Jean-Louis Vincent, MD, PhD; Benjamin Legros, MD ARCH NEUROL/VOL 68 (NO. 10), OCT 2011

• Retrospective review of patients treated with meropenem or cefepime in whom EEG has been performed (42 months)

|           | Patients<br>treated | EEG<br>performed | Continuous<br>epileptiform<br>discharges | Prevalence<br>(%) |
|-----------|---------------------|------------------|------------------------------------------|-------------------|
| CEFEPIME  | 1120                | 59               | 14                                       | 1.25              |
| MEROPENEM | 1572                | 80               | 3                                        | 0.25              |

- Continuous epileptiform discharges : 5-fold more frequent in CEF group
  - Blood serum creatinine concentration: elevated in 5/14 pts
  - Dead 7/14 Pts



#### NEUROTOXICITY

# Association of antibiotics with status epilepticus

Usha K. Misra, Jayantee Kalita, Satish Chandra, Pradeep P. Nair

117 status epilepticus

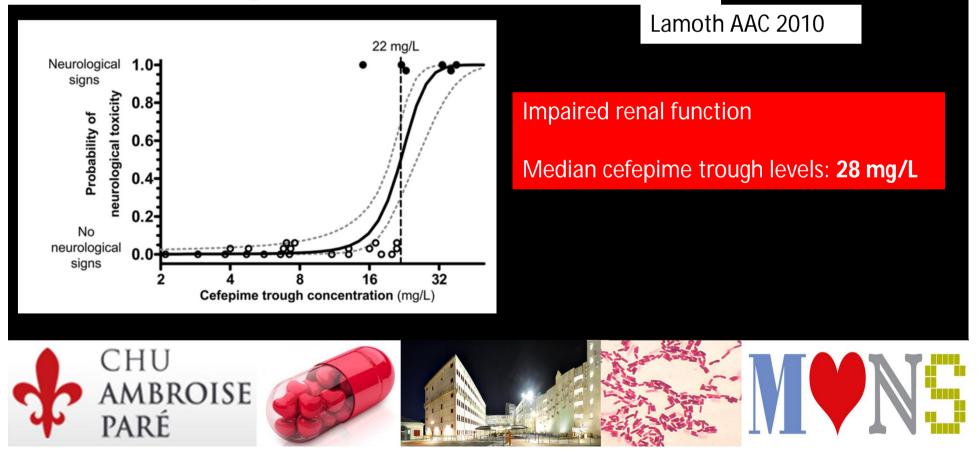
12 related to ABs

- 8 convulsivant
- 4 non-convulsivant

- 5 ceftazidim

Neurologica

- 2 piperacillin
- 1 cefepime


 Renal failure 6/12 (50%)

 Mortality:
 8/12 (75%)



#### NEUROTOXICITY

High Cefepime Plasma Concentrations and Neurological Toxicity in Febrile Neutropenic Patients with Mild Impairment of Renal Function<sup>⊽</sup>



#### NEUROTOXICITY

Absence of obvious link between supratherapeutic serum levels of  $\beta$  lactams and clinical toxicity in ICU patients with acute renal failure treated with intermittent hemodialysis

Faten May<sup>1,7\*</sup>, Najouah El-Helali<sup>2</sup>, Jean-François Timsit<sup>3,4,5</sup> and Benoît Misset<sup>1,6</sup>

Retrospective review 108 patients – 180 SEPSIS – 460 measurement of serum BL concentration

96/108 : at least one supratherapeutic level

No correlation with clinical seizure (univariate analysis)

| serum levels (mg/l) |                                                |                                                       |  |  |  |  |
|---------------------|------------------------------------------------|-------------------------------------------------------|--|--|--|--|
|                     | Upper therapeutic<br>trough level <sup>a</sup> | Observed trough level<br>median (interquartile range) |  |  |  |  |
| Piperacillin        | 20                                             | 77 (44–109)                                           |  |  |  |  |
| Tazobactam          | 5                                              | 13 (6-20)                                             |  |  |  |  |
| Cloxacillin         | 20                                             | 60 (35-103)                                           |  |  |  |  |
| Amoxicillin         | 20                                             | 31 (19-42)                                            |  |  |  |  |
| Imipenem            | 3                                              | 3 (1.1-4.2)                                           |  |  |  |  |
| Clavulanate         | 0.5                                            | 2 (1.3-3.6)                                           |  |  |  |  |
| Ceftazidim          | 20                                             | 71 (49–87)                                            |  |  |  |  |
| Cefepime            | 10                                             | 27 (16-47)                                            |  |  |  |  |

Table 1 Antibiotics assessed, thresholds used, and trough

<sup>a</sup> Five times bacterial modal minimal inhibitory concentration [4, 5]







#### NEUROTOXICITY

Elevated  $\beta$ -lactam concentrations associated with neurological deterioration in ICU septic patients

**RETROSPECTIVE STUDY** 

ALL ICU PATIENT treated with MEROPENEM (MEM), PIPERACILLIN-TAZOBACTAM (TZP) or CEFTAZIDIME/CEFEPIME (CEF) and AT LEAST 1 TDM PERFORMED (C<sub>MIN</sub>/MIC)

HYPOTHESIS: Association of serum concentrations with neurological deterioration?

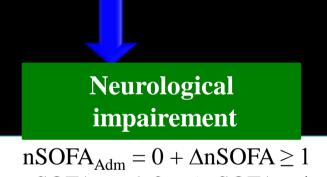
199 patients included (262 TDMs)

Beumier, Minerva Anestesiologica 2015



# Elevated $\beta$ -lactam concentrations associated with neurological deterioration in ICU septic patients

#### Neurological evolution


No Brain Dysfunction ->  $nSOFA_{Adm}$  and  $nSOFA_{TDM} = 0$ 

Brain Improvement ->  $nSOFA_{Adm}$  1-2 +  $\Delta nSOFA = 0$ 

No Clinical Change -> nSOFA<sub>Adm</sub>  $1-2 + \Delta nSOFA \leq 1$ 

Persistent Coma ->  $nSOFA_{Adm}$  3-4 +  $\Delta nSOFA \le 2$ 

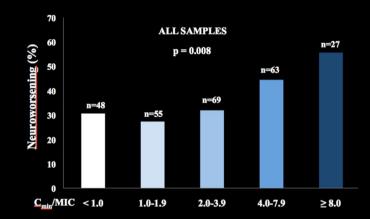
| Glasgow coma scale | SOFA score |
|--------------------|------------|
| 13 – 14            | 1          |
| 10 – 12            | 2          |
| 6 – 9              | 3          |
| < 6                | 4          |

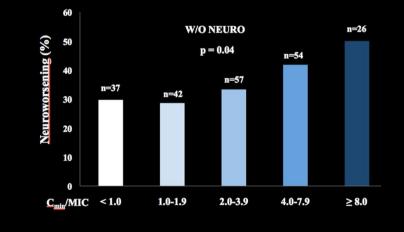


- 
$$nSOFA_{Adm}$$
 1-2 +  $\Delta nSOFA \ge 1$ 

Beumier, Minerva Anestesiologica 2015




# Elevated $\beta$ -lactam concentrations associated with neurological deterioration in ICU septic patients


\_

C

B

A





| Total TDM<br>CEF n:<br>PTAZ r<br>MEM n:<br>Neuroworser | =47<br>n=85<br>=130       |                  |
|--------------------------------------------------------|---------------------------|------------------|
| Variable                                               | Multivariable<br>analysis | OR (95% CI)      |
|                                                        | P value                   |                  |
| nin/MIC                                                | 0.003                     | 1.12 (1.04-1.20) |
| echanical ventilation                                  | 0.01                      | 2.17 (1.20-3.91) |
| lirubin, mg/dL                                         | 0.005                     | 1.06 (1.02-1.10) |
| nesthetics/Sedatives, N. (%)                           | 0.028                     | 1.97 (1.08-3.59) |

Beumier, Minerva Anestesiologica 2015





# Is high-dose $\beta$ -lactam therapy associated with excessive drug toxicity in critically ill patients?

Craig MCDONALD<sup>1</sup>, Menino O. COTTA<sup>1-3</sup>\*, Peter J. LITTLE<sup>3</sup>, Brett MCWHINNEY<sup>4</sup>, Jacobus P. J. UNGERER<sup>4</sup>, Jeffrey LIPMAN<sup>1, 2</sup>, Jason A. ROBERTS<sup>1-3</sup>

Rerospective study – 93 patients MEM PTAZ high vs standard dose (similar population of patients) TDM guided

|                                 | Meropenem                |                      |         | Piperacillin-tazobactam  |                      |         |  |
|---------------------------------|--------------------------|----------------------|---------|--------------------------|----------------------|---------|--|
|                                 | Licensed-dose<br>(N.=22) | High-dose<br>(N.=28) | P value | Licensed-dose<br>(N.=25) | High-dose<br>(N.=23) | P value |  |
| Dosing (g/day)                  | 3.6±2.7                  | 5.1±2.0              | 0.03    | 12.5±2.6                 | 18.5±4.6             | < 0.001 |  |
| Duration of therapy (days)      | 6.6±3.8                  | 7.9±4.5              | 0.28    | 5.9±3.7                  | 6.7±3.6              | 0.45    |  |
| Plasma concentrations obtained  | 44                       | 81                   |         | 34                       | 45                   |         |  |
| Dose changes n (%)              | 9                        | 14                   | 0.34    | 6                        | 8                    | 1.00    |  |
| Increase                        | 6 (66.7)                 | 12 (85.7)            |         | 3 (50)                   | 5 (62.5)             |         |  |
| Decrease                        | 3 (33.3)                 | 2 (14.3)             |         | 3 (50)                   | 3 (37.5)             |         |  |
| Treatment courses that achieved | 10 (45.5)                | 15 (53.6)            | 0.57    | 10 (40)                  | 12 (52.2)            | 0.40    |  |
| 100% fT <sub>&gt;MIC</sub> (%)  |                          |                      |         |                          |                      |         |  |









|                                         | Meropenem                |                      |         | Piperacillin-tazobactam  |                      |         |
|-----------------------------------------|--------------------------|----------------------|---------|--------------------------|----------------------|---------|
|                                         | Licensed-dose<br>(N.=22) | High-dose<br>(N.=28) | P value | Licensed-dose<br>(N.=25) | High-dose<br>(N.=23) | P value |
| Neurological                            |                          |                      |         |                          |                      |         |
| Seizure n (%)                           | 1 (4.5)                  | 2 (7.1)              | 0.70    | 0 (0.0)                  | 0 (0.0)              | -       |
| Renal (mean values)                     |                          |                      |         |                          |                      |         |
| CrCl (mL/min)                           | 128.4±19.9               | 234.2±94.6           | < 0.001 | 95.6±31.7                | $108.4 \pm 31.6$     | 0.17    |
| Need for CRRT                           |                          |                      |         |                          |                      |         |
| Incidence n (%)                         |                          |                      |         |                          |                      |         |
| Resolved need n (%)                     | 2 (9.1)                  | 0                    | 0.10    | 2 (8.0)                  | 0                    | 0.16    |
|                                         | 1 (4 5)                  | 0                    | 0.25    | 2 (2 0)                  | 0                    | 0.33    |
| Hepatic (mean values)                   |                          |                      |         |                          |                      |         |
| Albumin (g/L)                           | ) DIF                    | FFK                  |         |                          | .1±2.4               | < 0.001 |
| rotar Dimaoin (pinor L)                 |                          |                      |         |                          | .1±6.9               | 0.004   |
| ALP (U/L)                               |                          | <b>20</b> 0 1 5 6    |         | 10.0.00.0                | .3±43.0              | 0.002   |
| ALT (U/L)                               | 149.6±84.1               | 73.0±15.6            | < 0.001 | 40.9±23.3                | 45.1±18.8            | 0.50    |
| Hepatic Toxicity                        | 7 (21.0)                 | 5 (17.0)             | 0.05    | 1/1/0                    |                      | 0.00    |
| Hepatocellular derangement n (%)        |                          | _                    |         |                          |                      | 0.90    |
| Cholestasis (%)                         | <sup>3</sup> BU1         |                      |         |                          |                      | 0.26    |
| Hematological (mean values)             |                          |                      |         |                          |                      | 0.04    |
| Platelets (x 10 <sup>9</sup> /L)        | 318                      |                      | lanta   |                          |                      | 0.94    |
| White Cell Count (x 10 <sup>9</sup> /L) |                          | ang au               | lapte   | d to TE                  |                      | 0.46    |
| Neutrophils (x 10 <sup>9</sup> /L)      | 2                        | $\mathbf{U}$         |         |                          | .0                   | 0.07    |
| Hematological toxicity                  | $_{2}$ AIV               | 1 <i>f</i> T         |         |                          |                      | 0.07    |
| Thromocytopenia n (%)                   |                          | $1 f T_{>100}$       | )%MIC_  |                          |                      | 0.87    |
| Neutropenia n (%)                       |                          |                      |         |                          |                      | 0.33    |









## How To Manage?

- Discontinuation of therapy?
  - What if severe infection ?
- CI?
- Assessment of drug concentrations ?
- Extra-corporeal support?
   *CRRT > iHD*?



### Conclusions

- Increased dosing are sometimes required
- $\beta$ -lactams= « safe » ABs
- Toxicity (rare) is important to recognize difficult to diagnose – particularly in ICU patients - Underestimated problem ?
- High doses vs. high blood concentrations
- Patient "at risk" = TDM



